

# Chicken litter alternative fertiliser & way to increase soil C

LISA WARN

AG CONSULTING

E: l.warn@iinet.net.au



# Questions ?

If use as alternative to inorganic, granular fertiliser what is effect on:

- Pasture production, composition, quality
- Soil carbon
- Soil biology
- Cost of nutrients





### Research sites : 2009-2012

Glenaroua – near Seymour

- Sedimentary hills
- Sirosa phalaris & Trikkala sub

Pastoria - near Kyneton

• Granite hills

### Litter Composition – dry matter basis

| Dry matter<br>% | Carbon<br>% | C:N ratio | N<br>%  | P<br>%  | K<br>%  | S<br>%  | Moly<br>mg/<br>kg | Cu<br>mg/<br>kg | Zn<br>mg/<br>kg | B<br>mg/<br>kg |
|-----------------|-------------|-----------|---------|---------|---------|---------|-------------------|-----------------|-----------------|----------------|
| 70-90           | 34-50       | 10:1      | 2.5-4.5 | 0.8-1.4 | 1.2-2.4 | 0.4-0.6 | 3.5               | 127             | 385             | 31             |



Photo courtesy of David Williams

## Nutrients in Chicken litter - 1 t (wet)

| Carbon | N  | P  | K  | S  | Moly | Cu  | Zn  | B  |
|--------|----|----|----|----|------|-----|-----|----|
| kg     | kg | kg | kg | kg | g    | g   | g   | g  |
| 336    | 34 | 10 | 15 | 5  | 3    | 101 | 308 | 25 |

If Maintenance fertiliser rate is 10 kg P/ha

- = 114 kg/ha superphosphate
- = 1 t/ha litter

If SSP @ \$350/t spread = \$3.90/kg P Litter @ \$70/t spread= \$6.80/kg P

### Glenaroua site - spring 2009



#### Treatment Control (nil) Maintenance P,S fertiliser (100 kg/ha superphosphate) Maint. P,S & Humic acid Capital P,S (200 kg/ha super) Maint. P,S + N,K fertiliser (super plus urea & potash) Capital P,S + N,K Maint. rate Chicken litter (1.0 - 1.6 t/ha fresh) Capital rate Chicken litter (2.0 - 3.2 t/ha fresh)High Carbon rate Chicken litter (5.0 t/ha – nutrients supplied varies)

### Pasture growth: Litter vs inorganics

### • Short /medium term

- If apply same nutrient rates => same pasture & soil response
- no extra plant response
- At Glenaroua P,K,S good
  - Mainly an N response from litter
- (but urea cheaper)
- low rates of litter, more variable N response cf urea



### Effect on composition



### Pasture composition



Control

Capital rate chicken Litter

### Carbon stocks – spring 2012 (POC, HOC, ROC also measured)



# Soil biology



### Potential issues with organic materials

Cost of transport

Nutrient variability

Nutrient availability

N loss (up to 20-50% ...warm/dry)

Heavy metals

Pathogens (if non-composted)

- Fence off stock pile
- Apply in late summer/aut stock off 4 weeks



### Using organic products: litters, manures, composts

Does product supply nutrients you need at least cost?

- •What does your soil need ?
  - Soil test (& leaf analysis)
- Composition of product ?

   Get it analysed (1kg sample \$90)
- Cost \$/ kg nutrient ?



# Acknowledgments

RIRDC - Chicken Meat Group

Host producers - Thomsons & O'Sullivans

David Williams – Seymour Organic Fertilisers

Grasslands Society

GBCMA



# Conclusion

Chicken litter, manures, composts

- Can be cost-effective, alternative fertilisers
  - Price, transport cost, nutrients required
- High rates can build soil carbon but may not be economic
- Short /medium term
  - nutrient response
  - no extra plant response

Monitor soil fertility (incl Cu & Zn)

to select suitable product/s & rates

### Cost comparison - \$/kg nutrient

#### Superphosphate

8.8% P & 11% S

#### Litter

- 4% N, 1.2 % P, 1.8% K, 0.6%S
- 85% DM

| Cost<br>\$/t spread | Cost<br>\$/kg P |
|---------------------|-----------------|
| 300                 | 3.40            |
| 400                 | 4.50            |
| 500                 | 5.60            |

| Cost<br>\$/t (fresh)<br>Spread | Cost<br>\$/kg P |
|--------------------------------|-----------------|
| 40                             | 3.90            |
| 70                             | 6.80            |
| 100                            | 9.80            |

# Issues with using manures/litters/composts

Variable composition

• (nutrients, DM%, bulk density) but same cost \$/m<sup>3</sup>

Cartage /spreading

Animal health

stock pile (meat meal) => <u>fence off from livestock</u>

 potential pathogens in non-composted material => <u>Apply litter late summer/early autumn</u> <u>4 weeks</u> before graze (UV light, heat) => <u>Avoid grazing with young stock</u>



# Is fertiliser/lime needed? How much?

#### To make rational decisions

#### Need soil tests

- Land-class /soil type
- Or Paddock
- Take every 3-5 years

Leaf analysis – trace elements



# Soil tests

Soil test (0-10cm)
 Chemical (macro nutrients, pH, C, salt)
 Physical (soil type, OM, Na)
 Biology (not measured directly)

- Autumn vs Spring
- Depth critical
- Test poor sections of pdks (ID diff soil type/low K)
- Iook at Soil profile (root growth, pH/Al)
- fert test strips

# Soil fertility – Liebigs's Law of the Minimum



"yield is proportional to the amount of the most limiting nutrient, whichever nutrient it may be" Justus von Liebig

Need to correct all nutrient deficiencies

# N deficiency – eg. paddocks where P,K,S is high





Animal manures, litter, compost (Organic/recycled materials)

Alternatives to inorganic fertilisers ?

- Main benefit => supply nutrients
- Need to supply at same/lower cost than inorganics
- Need a local & reliable source

#### Organic matter & soil carbon ?

Soil biology ?



# Composition – dry matter basis

| Product             | Dry<br>matter<br>% | Carbon<br>% | C:N<br>ratio | N<br>%      | P<br>%      | K<br>%      | S<br>%      | Moly<br>mg/<br>kg | Cu<br>mg/kg | Zn<br>mg/<br>kg | B<br>mg/<br>kg |
|---------------------|--------------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------------|-------------|-----------------|----------------|
| Chicken litter      | 70-90              | 34-50       | 10:1         | 2.5-<br>4.5 | 0.8-<br>1.4 | 1.2-<br>2.4 | 0.4-<br>0.6 | 3.5               | 127         | 385             | 31             |
| "Revive"<br>Compost | 80                 | 10-15       | 11:1         | 0.9-<br>1.2 | 0.4         | 0.4-<br>0.7 | 0.2-<br>0.3 | 1.4               | 42          | 190             | 15             |
| Mushroom<br>compost | 56                 | 22          | 10:1         | 2.2         | 0.7         | 1.3         | 3.5         | 4.7               | 85          | 260             | 28             |

| 1/2   | $\langle / 2 \rangle$                                    |            |           |           |            |  |  |  |  |
|-------|----------------------------------------------------------|------------|-----------|-----------|------------|--|--|--|--|
| Value | Cost of product                                          | N<br>\$/ka | P<br>¢/ka | K<br>¢/ka | S<br>\$/ka |  |  |  |  |
|       | Chicken litter<br>@ \$28/m <sup>3</sup><br>(\$ 88/t dry) | 2.05       | 6.80      | 4.55      | 13.66      |  |  |  |  |
|       | Urea<br>@ \$600/t                                        | 1.30       | -         | -         | -          |  |  |  |  |
|       | Single Super<br>@ \$400/t<br>(+ moly 0.05% @<br>450/t)   | _          | 4.55      | _         | 3.64       |  |  |  |  |
|       | Muriate of Potash<br>@ \$740/t                           | _          | _         | _         | 1.48       |  |  |  |  |

# Value of nutrients

| Nutrient<br>in litter | Kg nutrient /t<br>fresh litter | Value<br>\$             |
|-----------------------|--------------------------------|-------------------------|
| Ν                     | 34.0                           | 44.20                   |
| Р                     | 10.0                           | 45.40<br>(51.30 + moly) |
| K                     | 15.3                           | 22.60                   |
| S                     | 5.0                            | not valued              |

#### Cost \$70/ha.... .over \$100 worth of nutrients in 1 t of litter

#### Initial soil test results - Glenaroua

| Test             | Aug 09 | Target    |
|------------------|--------|-----------|
| Olsen P          | 13     | 12 - 15   |
| (mg/kg)          |        |           |
| Colwell K        | 216    | 160       |
| (mg/kg)          |        | clay loam |
| KCI40 <b>S</b>   | 8      | 8         |
| (mg/kg)          |        |           |
| pH (water)       | 5.2    | 5.3 – 5.5 |
| Organic carbon % | 4      | 3 - 5     |

*Effect on soil fertility* 

• similar increase in soil P,K,S

With increasing rate of litter • trace elements in soil & leaf increased Effect on total cations (CEC) & Carbon

Very high rates of litter (5t/ha per yr over 4 yrs)

• CEC increased (6.5 => 8.0 meq/100g)

• C % increased by 0.9% in topsoil (3.5% => 4.4 %)

#### Soil organic matter - organic carbon

Key role in soil health

Physical – soil structure, water retention

Chemical - nutrients, cation exchange capacity

Biological – nutrients & habitat for organisms

C sequestration

- Carbon tax =>Emission trading scheme
- forms of carbon important (recalcitrant, particulate OM, humus)



CSIRO

#### Soil tests for Carbon: 0-10cm & 10-30cm



#### Carbon stocks at Glenaroua – spring 2012



### Value of organic matter in litter High rate of litter (20t/ha over 4 yrs = \$1400/ha)

| Site                     | Additional<br>carbon stored | Additional<br>Carbon               | Value of<br>carbon @           | Value of<br>carbon @           |  |
|--------------------------|-----------------------------|------------------------------------|--------------------------------|--------------------------------|--|
|                          | (t/hain 0-<br>30cm)         | (t CO <sub>2</sub><br>equivalents) | \$24.15/t<br>CO <sub>2</sub> e | \$15.00/t<br>CO <sub>2</sub> e |  |
| Pastoria<br>(loam)       | 3.0                         | 11.0                               | \$ 266                         | \$ 165                         |  |
| Glenaroua<br>(clay loam) | 10.0                        | 36.6                               | \$ 884                         | \$ 549                         |  |
| Value of C in<br>litter  |                             |                                    | \$ 5-18/m <sup>3</sup>         | \$ 3-11/m <sup>3</sup>         |  |